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Microwave Instability in dike 
Quasi-Isochronous Buckets 

K.Y. Ng 

Fermi National Accelerator Laboratory,* P.O. Box 500, Batavia, IL 60510 

Abstract. The problem of microwave instability inside an cr-like quasi- 

isochronous bucket is addressed. The coupling impedance at wavelengths shorter 

than the length of t,he short. bunches is found to be not small. The Keil-Schnell 

criterion is modified for such a bucket, using the concept of self-bunching. The 

mechanism of particle loss during a microwave growt,h is examined. 

I INTRODUCTION 

In order to obtain very short bunches and to avoid unreasonably large rf 
voltage, sometimes it is necessary to design a storage ring that operates with 
a very small slippage factor 70. In that case, ~1, the next order in fractional 
momentum-offset 6 of the slippage factor, will become important. If Ad, the rf 
phase offset, is used as a variable conjugate to the fractional momentum-offset 
5, the Hamiltonian governing the motion of a beam particle can be written as 

s [cos(d, •t A+) + A$sin dS] , (14 

where $S is the synchronous phase, V the rf voltage, E the energy of the 
particle with revolution frequency wo/(27r) and velocity ,6 relative to that of 
light. At large IQ,/v~ 1, the H amiltonian represents two series of distorted 
pendulum-like buckets as shown in Fig. l(a). As lqo/qll decreases to a point 
when the values of the Hamiltonian through all unstable fixed points are equal, 
the two series merge as depicted in Fig. l(b) [l]. When 

l${l~~~oE [(~-~~)sinh,-cosSrlJ1’2 , (1.2) 

the buckets becomes a-like as in Fig. l(c). By the way, the right-hand side 
of Eq. (1.2) is just fi times the half bucket height when the 71 term in 
the Hamiltonian is absent. This o-shaped bucket is asymmetric in fractional 

*) Operated by the Universities Research Association, Inc., under cont,ract wit.h the U.S. 

Department of Energy. 
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FIGURE 1. (a) When [no/qr1 is not too small, the longitudinal phase space shows 2 

series of distorted pendulum-like buckets. (b) As /qc/vr[ d ecreases to t.he crit,ical value in 

Eq. (1.2), the 2 series merge. (c) Further reduction of lnc/~l leads to new pairing of stable 

and unstable fixed point,s and the buckets become o-like. In each case: the dotted line is 

the phase axis at zero momentum spread, and the small circles are the st.able fixed points. 

momentum spread, with fixed [~a/277 r in the positive direction and lqa/ql 1 in ( 
the negative direction. 

By the deployment of sextupoles, the contribution of 71 can be eliminated, 
and the next order q2 will restore the bucket to pendulum-like, even if the 
zeroth order ~0 vanishes. However, the a-like bucket has its own merit of 
being much narrower than the pendulum-like bucket. Therefore, if one needs 
an extremely short bunch, such a bucket may become indispensable. 

Since the total slippage factor, 7 = ~0 + 716 + r/2b2 + . . . , is vanishingly 
small, the spread in revolution frequency inside the bunch will be small. As 
a result, there will be very little Landau damping to counteract the growth 
in microwave instability. Since the microwave wavelength must be less than 
the size of the bunch, we would like to investigate in Sec. II whether there 
is any significant coupling impedance at such short wavelengths to drive the 
collective instability. In Sec. III, we study the concept of self-bunching and 
rewrite the Boussard-modified Keil-Schnell stability criterion [2-4] so that it 
is applicable for the a-like bucket. We also investigate the way particles are 
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lost during microwave instability. Finally, conclusions are given in Sec. IV. 
In our study, the recently proposed 2 TeV-2 TeV muon-muon collider [5] 

will be used as an example. Although the o-like bucket will be avoided by two 
families of sextupoles [6,8], an analysis of microwave instability inside such a 
bucket is still of much interest [7]. 

II AMOUNT OF IMPEDANCE 

The usual Boussard-modified Keil-Schnell criterion for longitudinal mi- 
crowave stability is 

where 211/n is the longitudinal coupling impedance of the vacuum chamber 
per revolution harmonic, 

Ip = &FLU7 P-2) 

is the local peak current, E is the particle energy and p its velocity with 
respect to the velocity of light. Each bunch in the muon collider contains 
N = 2 x 1012 muons with a rms length a7 = 10 ps and a rms momentum 
spread of g6 = 0.15%. The short bunch length as well as a reasonable rf 
voltage limit the slippage factor of the collider to 7 5 1 x lop6 [7,8]. The 
circumference of the collider ring is Co = 27rR - 8000 m. The peak local 
current is therefore Ip = 12.78 kA, and the limit for microwave stability turns 
out to be ]Zll]/n ,$ 0.0022 Ohm [9], h’ h w lc is definitely exceeded by coupling 
impedance of any realistic vacuum chamber. 

The Boussard-modified Keil-Schnell criterion can be rewritten as 

nw0{v 5 nwol~olf-76 , (2.3) 

where the left side is the growth rate and the right side the rate of Landau 
damping. Since the storage of the muons la.sts for only about 1000 turns, if 
the growth rate is slow, the microwave growth may not be important. 

Microwave instability develops inside a bunch with wavelengths less than 
the length of the bunch. For a. bunch of length a7 = 10 ps, the frequency of 
the microwave disturbance must therefore be 

15.6 GHz , 

or in revolution harmonics, n 2 4.16 x 10’. The Landau damping time is there- 
fore about 250 turns and the growth time is much less for a reasonable Z/l/n. 
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Since these times are much less than the storage time of - 1000 turns, the 
microwave growth will be important and the amount of longitudinal coupling 
impedance in the vacuum chamber becomes an important issue. 

One may argue that the usual broad-band model has the coupling im- 
pedance centered around the cutoff frequency. Therefore, the 2,1/n at the 
high frequencies that is responsible for microwave instability must drop down 
tremendously. However, the designed pipe radius of the collider is b = 1.5 cm. 
With c denoting the velocity of light, the cutoff frequency is therefore already 
fc = 2.405c/(2~b) = 7.65 GH z, which is not much lower than the - 15 GHz 
that we talked about. Remember that the broad-band model is only a model 
and the coupling impedance may not actually be centered right at cutoff. It 
is also possible that the coupling impedance consists of more than one broad 
band. 

Let us investigate the possibility of having a reasonable amount of longitudi- 
nal coupling impedance above 15 GHz. Henke [lo] had computed analytically 
the longitudinal coupling impedance of a small pill-box cavity. With a depth 
to pipe radius ratio of A/b = 0.1 and width to pipe radius 2g/b = 0.01, the 
real part of the longitudinal coupling impedance is shown in Fig. 2 [ll]. We 
see roughly a broad band with a peak value of - 10 R. It is centered at 
wb/c M 15 or 48 GHz, which corresponds to about a half wavelength into the 
cavity depth A. For a collider ring circumference of 8000 m, this amounts to 
ReZ~j/n E 7.9 x 10e6 R. Note that this cavity depth is, in fact, A = 1.5 mm 
and width 2g = 0.15 mm; so it is like a scratch in the beam pipe. If we add up 
a lot of such “scratches” or small dings and bugglings for the whole vacuum 
chamber, the total Re Z,,/n can be appreciable. 

In Fig. 3, we plot the real part of the longitudinal coupling impedance 
for the same pill-box cavity with depth increased to A/b = 0.2 and the to- 
tal width increased to 2g/b = 0.2. We see two broad peaks. The first one 
peaks at roughly 25 R around wb/c M 6 or - 19 GHz, corresponding to 
7?eZll/n z 5 x lo-’ 0. This is a cavity of depth A = 3 mm and width 
2g = 3mm. Th e small pill-box like cavity left behind by a shield bellows 
system can be of such a size. Assuming 1000 bellows systems for the more 
than a thousand elements, the longitudinal coupling impedance per revolution 
harmonic is therefore Re Z,,/n FZ 0.05 0. In an earlier design of the sliding 
shielded bellows of the Superconducting Super Collider, the pill-box like cavity 
left behind has a depth of A = 4 mm and a width of as much as 2g = 10 cm 
when the vacuum chamber is at superconducting temperature. Such a system 
gives a broad-band impedance [la] of - 40 R at 15 GHz. For 1000 such bellows 
in the muon collider, the coupling impedance adds up to Re Z,,/n E 0.1 R. 

There must also be some other small discontinuities in the vacuum chamber. 
As a result, it is not unreasonable to assume that a Z’,,/n of magnitude from 
0.1 to 1.0 R will be driving the microwave instability in the muon collider ring. 
According to Eq. (2.3), the growth time at 15 GHz can therefore be as short 
as 37.9 to 12.0 turns. 
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FIGURE 2. Real part of longit,udinal impedance as a function of wb/c for a pill-box cavity 
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FIGURE 3. Real part of longitudinal impedance as a function of wb/c for a pill-box cavity 

of depth A = 0.20 b and length 2g = 0.20 b, w h ere b is the radius of beam pipe and w/2x is 

the frequency. 
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III SELF BUNCHING 

The Boussard-modified Keil-Schnell criterion can also be rewritten as 

(':;,l;$)1'2 5 2as . (3.1) 

The left side is the height of a bucket driven by a voltage I,lZlll at harmonic 
n. Stability implies that this bucket height must be less than 2as or roughly 
the half momentum spread S,,,. This is called self-bunching. 

Now we can generalize this idea of self-bunching to the o-like bucket. When 
the driving impedance is small, the particles will self-bunch into pendulum- 
like buckets as shown in Fig. 4a. Again, when the height of the pendulum-like 
buckets is larger than the momentum spread of the bunch, we have microwave 
growth. Therefore, for no growth we require, according to Eq. (3.1), 

( 2~;~~$)1’2 5 u6 . (3.2) 

This is because the bunch has a momentum spread in the negative direction 
that is twice the spread in the positive direction. The impedance limit becomes 

1$1 5 ( ““l;;p~2”) (g2 . (3.3) 

This amounts to only IZll/nl = 0.00055 Ohm, which is just f of the limit 
in Eq. (2.1). However, if the coupling impedance is large enough, the self- 
bunching buckets will be a-like instead as depicted in Fig. 4b. This occurs 
when 

( 6c$~l~$) li2 > lzi ) (3.4) 

according to Eq. (1.2). If we take l~a/~rl = 36,,, = 0.009, the limit for 
stability becomes IZjl/nj = 0.0066 Oh m, which is most likely less than the 
impedance of the vacuum chamber. Note that there are two sets of self- 
bunching buckets. One set has bucket height from --lqo/qr I to 170/2771 I and 
the other from -13~0/2~ I to 0. Unlike the microwave instability in the usual 
pendulum-like bucket which may lead only to a growth of longitudinal emit- 
tance, here particles will be lost by leaking out from the original a-like bucket 
of the bunch, while, for example, making synchrotron oscillation inside the 
self-bunching a-like buckets centered at 6 = -lr/o/~ll. The rate is just the 
synchrotron frequency inside the self-bunching bucket or, in terms of number 
of turns, 
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FIGURE 4. A bunch in a u-like bucket is subjected to self-bunching by a disturbance 

having a wavelengt,h less than the size of the bunch. The self-bunching buckets are (a) 

pendulum-like when the coupling impedance is small, and change to (b) a-like when the 

coupling impedance is large. 
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. 
(3.5) 

For a broad-band disturbance of IQ/n] = 1 Ohm, centered at 20 GHz or 
harmonic n = 5.33 x lo’, this amounts to AN = 9.36 turns. 

It is worth pointing out that the self-bunching buckets in Fig. 4 have been 
sketched over-simplified. The strength of the self-bunching force depends on 
1,lZlll where If is the local linear current. As we are moving from the center to 
the edge of the bunch, the self-bunching force will decrease to zero. Therefore: 
the two series of self-bunching a-like buckets will become fatter away from the 
bunch center and will eventually merge to form pendulum-like buckets instead 
near the edge of the bunch. 

Bunch particles that are not inside a self-bunching bucket can also be lost. 
For example, a particle at point A will travel to point B. The time taken can 
be computed. Let A be at the point where the phase is n/2 in unit of the 
disturbance harmonic and momentum spread zero. From the Hamiltonian of 
Eq. (1.1) with y h s nc ronous pha.se $S = 0 or 7r, it is easy to obtain the number 
of turns required: 

AN = h! = J& Tl2 d*d 
TO J vo3 0 P2+P ’ 

where 

1716 p=--- 
170 

is a normalized momentum spread and depends on A4 through 

(3.6) 

(3.7) 

In Eq. (3.6), To is the revolution period. Therefore, the left side AN is the 
number of turns, and its inverse represents a loss rate, which is proportional 
to the harmonic n of the disturbance. The integral cannot be performed 
analytically. However when IPIZll/ I n is very large, or more exactly when the 
left side of Eq. (3.8) is very much larger than f, the integral can be estimated 
to obtain 

& = 2nlqol ( 31~jf~~‘)2’3 . 

With lqa\ = 1 x 10P6, Iqa/qil = 3S,,, = 0.009, and a bunch intensity of 
2 x 10” muons, the integral in Eq. (3.6) is evaluated numerically, and the 
loss time AN is plotted in Fig. 5 for different values of the impedance. Also 
plotted is the loss rate l/AN, which is not far from the dotted curve, which 
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FIGURE 5. The growth time and growth rate for a bunch inside an cr-like bucket., when 

the self-bunching buckets are also cr-like. The dotted curve is an analytic estimate. 

is the estimate given by Eq. (3.9). W e see that this loss time is around 1500 
turns even when IZll/nl =l Oh m, which is very much longer than the 9.36 turn 
loss time due to synchrotron oscillations inside a self-bunching a-like bucket. 
Such slow rate may come from the fact that the trajectory AB is situation 
between two sets of separat,rices. 

IV CONCLUSION 

The problem of microwave instability in an o-like bucket has been investi- 
gated. Using the concept of self-bunching, a stability criterion similar to the 
Boussard-modified Keil-Schnell criterion has been derived. We found that the 
stability limit for this bucket is only I.Z$/nl 5 0.00055 Ohm. We also argued 
that it is reasonable to believe the broad-band microwave driving force cen- 
tered 2 15 GHz, can have a peak value of IZll/nl z 0.1 to 1 Ohm. Thus, the 
growth time can be as short as 38 to 12 turns. So microwave instability can 
become really serious for storage rings with a-like buckets, even for a muon 
collider that has a storage time of only - 1000 turns. We also found that in 
most cases the self-bunch buckets for the muon in the a-like bucket will also 
be a-like. In that case, particle loss will be inevitable. 
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